sábado, 22 de junio de 2013






PLANIFICACIÓN DIDÁCTICA CLASE A CLASE 2010
ESCUELA ELEUTERIO RAMÍREZ F 264

Sector de Aprendizaje:   Matemáticas Fracciones                                                               Profesor(a):   Francisco Otárola Soto                                                  
Nivel: 5° año                                                                                                                          Número de hrs.:    24 horas
Objetivos Fundamentales:
1.- Observar, sistematizar, discutir sobre los diferentes aspectos de las fracciones.
2.- Desarrollar de habilidades espaciales y geométricas para la ubicación de las piezas del rompecabezas.
3.- Resolución de problemas.
4.- Estimar  resultados, evaluar  y comprobar.
5.- Establecer síntesis sobre regularidades, propiedades y procedimientos.
6.- Descubren regularidades y patrones.

Contenidos:
1.- Fracciones en situaciones correspondientes a diversos significados (partición, reparto, medida…):
2. -Lectura y escritura. Fracciones en situaciones correspondientes a diversos significados (partición, reparto, medida…): -Lectura y escritura. -Graficar fracciones.
3.- Fracciones en situaciones correspondientes a diversos significados (partición, reparto, medida…): -calcular numéricamente el valor de fracciones en colecciones.
4.- Comparar y establecer equivalencias.
5.- Encontrar familias de fracciones equivalentes:
  -Con material concreto
  -utilizando unidades del sistema métrico decimal (longitud, peso, capacidad).
  -amplificando y simplificando.
6.-  Ubicar una fracción entre dos naturales, utilizando la recta numérica.
  - Ordenar e intercalar fracciones, con referencia a la recta numérica.
7 Adición y sustracción: realizar cálculos, sustituyendo fracciones por otras equivalentes, cuando sea necesario.








Fecha/
Hora(s)
Aprendizaje
Esperado
Estrategias metodológicas
Cada clase debe tener motivación, desarrollo y cierre
Materiales/
Recursos
Indicador de logro
Septiembre
Justifican procedimientos de fraccionamientos concretos y comprueban equivalencias entre las partes.




INICIO – MOTIVACIÓN.
1)       Recuerdan lo que saben de las fracciones. Su utilidad
2)       Conocen el objetivo de la clase de hoy.
3)       Cortan al menos de dos formas diferentes, papeles lustres (10 cm por 10 cm), trozos de papel de forma circular (todos del mismo tamaño) y cordeles de diferentes longitudes (5, 10, 15, 21, 24 y 30 centímetros) en: medios, cuartos, tercios, quintos, séptimos y octavos.

DESARROLLO  ACTIVIDADES
1) Comparten y discuten en grupos sus procedimientos y resultados a partir de preguntas como:
     ¿Todos estos elementos se pudieron cortar de dos maneras diferentes en medios, tercios, etc? ¿Qué pasó con el cordel? ¿Cuál de los fraccionamientos resultó más difícil? ¿Cómo pueden comprobar la equivalencia de las partes, por ejemplo, entre “medios” de diferentes forma de un papel lustre?

 ACTIVIDADES DE CIERRE
En cada situación verbalizan procedimientos, reflexionan sobre aquellos fraccionamientos que implican una mayor dificultad, los que requirieron de la utilización de instrumentos de medición, aquellos que no pudieron resolver.

Profesores:
Material audiovisual
Ficha de actividades
 Pizarra
PC
Data

Alumnos:
Cuadernos
Textos
Regla
Compás

Formativa:
1) Escribe con palabras estas fracciones:
=                     =

=                      =

=                       =

2) Escribe la fracción que corresponda:
a) un medio =                    b) un tercio =
c) Dos cuartos =                d) Tres quintos =
e) Cuatro séptimos =        f) Cinco octavos =


3) Escribe la fracción que tenga:
a) Numerador 3 y denominador 3 =
b) Denominador 7 y numerador 0 =
4) ¿Qué significa la fracción ¼ ?
Septiembre  

Justifican procedimientos de fraccionamientos concretos y comprueban equivalencias entre las partes.


INICIO – MOTIVACIÓN.
1)       Recuerdan las actividades de la clase anterior.
2)       Conocen el objetivo de la clase de hoy.
En grupo, representan gráficamente la siguiente situación: “ “ Me tomé la mitad del jugo de la botella “ 

DESARROLLO  ACTIVIDADES

1) Exponen al curso la representación realizada por grupos.
     a) Representan en forma gráfica:
o    Faltan dos sextos del camino para llegar a mi casa.
o    Me demoré tres cuartos de hora en ordenar mi pieza.
o    Dos tercios de la bandera argentina son de color celeste.
o    Un cuarto del mural tiene fotos del curso.
      b) Comparan sus representaciones con sus compañeros(as) y escriben las fracciones correspondientes.
c)        Buscan formas de expresar el complemento en cada una de las frases: por ejemplo ¿Qué parte del mural no tiene fotos?
d)       Fraccionar de diferentes formas un medio, un cuarto, etc.
e)        Crean otras situaciones, las representan gráficamente y escriben las fracciones correspondientes.
2) Arman rompecabezas con figuras geométricas equivalentes, a partir de una pieza y de su relación con el rompecabezas completo. Reproducen la pieza en la cantidad necesaria:
                                                    
a) Esta pieza corresponde      b) Esta pieza corresponde        c) Esta pieza corresponde             d) Esta pieza corresponde
 a ¼ de un rompecabezas         a 1/9 de un rompecabezas         a 1/8 de un rompecabezas           a 1/8 de un rompecabezas
con forma de triángulo.            con forma de rombo                 con forma de rectángulo.             con forma de rectángulo.
                                                                                                                          O ¼ de un cuadrado.

 ACTIVIDADES DE CIERRE
Concluir que para graficar se divide un entero en las partes iguales que indique el denominador y se pinta las partes iguales que indique el numerador.


RECURSOS REQUERIDOS:
Profesores:
Ficha de actividades
Láminas
PC
Data


Alumnos:
Cuadernos
Textos
Regla
Compás

Formativa:
1) Escribe la fracción representada:






      





2) Representa en forma gráfica las siguientes fracciones:
a)  Me comí la mitad de la cassatta:

           
b) Me tomé dos quintos de la botella de bebida:



c) Faltan 2/9 del libro para terminar de leer.

Septiembre
Realizar fraccionamientos de colecciones a nivel concreto y gráfico y determinar la fracción de un número.

INICIO – MOTIVACIÓN.
1)       Recordar las actividades de la clase anterior.
2)       Conocer el objetivo de la clase de hoy
3)       En grupo, resuelven la siguiente situación con material concreto: ¿Qué parte del total recibe cada persona si se reparten 18 dulces entre dos personas? ¿Si se reparten 18 dulces entre 6 personas?

DESARROLLO – ACTIVIDADES
1)Dan a conocer las estrategias usadas por cada grupo:
    a) Matías y Camilo tienen 24 láminas entre los dos, 1/3 de esas láminas es de Matías, el resto es de Camilo. ¿Qué parte del total es de Camilo? ¿Cuántas son de Camilo? ¿Cuántas son de Matías?
    b) En una caja hay 30 lápices, 2/5 son de color rojo. ¿Cuántos son lápices rojos? ¿Cuántos no son rojos?

2) Leen y comentan: “Matías, Josefina y Ana tienen, cada uno, bolsas de dulces. Matías tiene 12 dulces de los cuales 3 son de chocolate, Josefina tiene 8 dulces de los cuales 2 son de chocolate, Ana tiene 16 dulces de los cuales 4 son de chocolate”
    a) Grafican la situación.
    b) Responden: ¿quién de los tres tiene ¼ de sus dulces de chocolate?

3) Leen y comentan: “Como premio de una competencia se desea entregare bombones de manera que:
    a) El primer lugar recibe ½ del total de bombones.
    b) El segundo lugar recibe 2/5 del total de bombones.
    c) El tercero recibe 1/10 del total de bombones”
    ¿Se puede entregar estos premios si lograron comprar 20 bombones?
    ¿Y si lograron comprar 25 bombones?
    ¿Y si compran 60 bombones?

ACTIVIDADES DE CIERRE
Concluyen que:
a)       Para calcular una fracción de un entero (conjunto) se divide el entero por el denominador y se multiplica por el numerador.
b)       Cuando se pregunta “¿qué parte…?” se refiere a fracciones, en cambio “¿cuántas…?” se refiere a la cantidad expresada en números naturales.

RECURSOS REQUERIDOS:
Profesores:
Pizarra
PC
Data


VERIFICACIÓN DE LOGRO:
Formativa:
1) Calcular:

de 8 =                de 15 =


2) Resolver:
El papá de Juan tiene 48 años. La edad de Juan es un cuarto de la edad del papá y la edad de la mamá es cinco sextos de la edad del papá. ¿Quién es mayor, el papá o la mamá?
¿Cuántos años más que Juan tiene la mamá?
Septiembre  

Representar situaciones que contienen magnitudes diversas (longitud, capacidad, tiempo) y colecciones, en forma concreta, gráfica y numérica, que impliquen:
-establecer relaciones de orden entre fracciones.

INICIO – MOTIVACIÓN.
1)       Recuerdan las actividades de la clase anterior.
2)       Conocen el objetivo de la clase de hoy.
3)       Leen cada una de las siguientes situaciones y responden cuánto pastel le corresponde a cada niño en cada caso, si cada niño recibe igual cantidad de pastel y no sobra pastel:
-1 pastel entre tres niños
-2 pasteles entre tres niños
-3 pasteles entre tres niños
-4 pasteles entre tres niños
-5 pasteles entre tres niños.
DESARROLLO – ACTIVIDADES
1)       Resuelven las situaciones y comparten con el resto del curso sus estrategias.
2)       Realizan otras actividades similares que impliquen un reparto equitativo en las que se hace variar la cantidad de objetos por repartir (pizzas, sandwichs, chocolates, etc) manteniendo constante el número de personas.
-Elaboran  tablas representando los repartos equitativos, en las cuales se identifiquen aquellos en que las personas reciben más del entero, menos del entero o exactamente un entero:
Nº de pizzas
Nº de personas
Partes para c/u
1
2
½
2
2
2/2 = 1
3
2
3/2 = 1½

              -Observan la tabla y después de resolver estas situaciones, buscan cómo pueden anticipar la cantidad que recibirá cada persona.

ACTIVIDADES DE CIERRE
Concluyen que, las fracciones que tienen el numerador menor que el denominador, son menores que el entero; las que tienen el numerador igual al denominador son iguales al entero y las que tienen el numerador mayor que el denominador son mayores que el entero.




RECURSOS REQUERIDOS: Profesores:
Láminas
Pizarra
PC
Data
Alumnos:
Cuadernos
Textos
Regla
Compás
VERIFICACIÓN DE LOGRO:
Formativa:
1) Repartir :
a) una manzana entre cuatro niños(as)
b) dos manzanas entre 4 niños(as)
c) 3 manzanas entre cuatro niños(as).
d) 4 manzanas entre cuatro niños(as).
e) 5 manzanas entre cuatro niños(as).
f) 6 manzanas entre cuatro niños(as).


2) Responden:
a) Escriben las fracciones menores que el entero en el reparto anterior:

b) Escriben las fracciones iguales al entero.

c) Escriben las fracciones mayores que el entero.
Octubre
Representar situaciones que contienen magnitudes diversas (longitud, capacidad, tiempo) y colecciones, en forma concreta, gráfica y numérica, que impliquen:
-establecer relaciones de orden entre fracciones.
-expresar datos y/o resultados como fracciones propias e impropias.



INICIO – MOTIVACIÓN.
1)       Recuerdan las actividades de la clase anterior.
2)       Conocen el objetivo de la clase de hoy.
3)       Leen y comentan las siguientes expresiones:
-“Compré un kilo y medio de carne” dice Camila “y yo compré 3/2” dice Joaquín.
-Trabajé 5/4 de hora”
-Tengo 2 litros y medio de leche”
-“Comimos tres pizzas y 4/6 de otra”
DESARROLLO – ACTIVIDADES
1)        Explican con sus propias palabras qué significa cada una de las expresiones y buscan otra manera de expresar lo mismo.
2)       Comparan:
-1 kilo y medio y tres medios kilos.
-5/4 de hora y 1 hora y cuarto
-2 litros y medio y 5 medios litros
-3 pizzas y 4/6 con 3 pizzas y 2 tercios y 11/3 de pizza.

3) Crean otras expresiones de este tipo y desafían a sus compañeras(os) a interpretarlas.


ACTIVIDADES DE CIERRE
Concluyen que:
a)       Para expresar fracciones impropias en números mixtos se divide el numerador por el denominador.
Para expresar números mixtos en fracciones impropias se multiplica el entero por el denominador y se le suma el numerador.

RECURSOS REQUERIDOS:
Profesores:
Pizarra
 Láminas
PC
Data

Alumnos:
Cuadernos
Textos
Regla
Compás

VERIFICACIÓN DE LOGRO: 
Formativa:
1) Buscan otra de manera de expresar las siguientes situaciones:
a) Un kilo y tres cuarto =
b) Un metro y medio =
c) Dos litros y medio =
d) Una hora y 3/5 =

2) Expresa en número mixto:

=                     =



3) Expresa en fracción impropia:

2 =                   3 =
Octubre
Justificar procedimientos de fraccionamientos concretos y comprobar equivalencias entre las partes.




INICIO:
1)       Recuerdan las actividades de la clase anterior.
2)       Conocen el objetivo de la clase de hoy.
3)       Trabajan con papel lustre, doblando sucesivamente para obtener medios, cuartos y octavos.
Desarrollo:
) Doblan otro papel lustre para obtener tercios, sextos y novenos;  otro para quintos y décimos.
     - Reflexionan y establecen equivalencias a partir de preguntas como:
      ¿Cuántos cuartos cubren un medio del entero? ¿Cuántos octavos cubren un medio del entero?
      ¿Cuántos octavos cubren un cuarto del entero? ¿Cuántos sextos son equivalentes a dos tercios? ¿Cuántos novenos son equivalentes a dos tercios?  Con cuatro décimos de un papel lustre ¿Cuántos quintos puedes cubrir?

2) Trabajan con 6 cuerdas o tiras de papel de igual longitud:
     a) Utilizando 3 huinchas:
          -En una marcan  0; ½; 2/2
          -En otra 0; ¼; 2/4; ¾; 4/4
          -En otra 0; 1/8; 2/8; 3/8; 4/8; 5/8; 6/8; 7/8; 8/8.
       Determinan las fracciones equivalentes comparando las huinchas de papel y escriben las equivalencias.
       Reflexionan a partir de preguntas tales como: ¿con cuántos cuartos se cubre la mitad de la huincha? ¿con cuántos octavos se cubre la mitad de la huincha?
      b) Utilizando los otros 3 cordeles o huinchas:
          -En una marcan los tercios (1/3 y 2/3)
          -En otra los sextos (1/6; 2/6; etc.)
          -en la última marcan los novenos (1/9; 2/9; etc.)
        Determinan las fracciones equivalentes comparando las huinchas de papel y escriben las equivalencias.
       Reflexionan a partir de preguntas tales como: ¿con cuántos sextos se cubre un tercio de un entero (huincha)? ¿con cuántos novenos  se cubre un tercio del entero (huincha)?
a)        Buscan fracciones equivalentes comparando las huinchas con medios, cuartos y octavos con las que tienen marcados los tercios, sextos y novenos.

3) Utilizando las conclusiones de una actividad como la anterior, buscan otras equivalencias entre fracciones (quintos y décimos).
      a) Registran en tarjetas las familias de fracciones equivalentes que encontraron. Por ejemplo en una tarjeta escriben ½ y todas las equivalentes a ella.
      b) las tarjetas son compartidas en el curso. Agregan a sus tarjetas otras fracciones equivalentes a la elegida como representante.

CIERRE:
Concluyen que:
1)       Para encontrar fracciones equivalentes se amplifica la fracción.
2)       Amplificar es multiplicar el numerador y el denominador por un mismo número.
3)       Para encontrar el representante de cada familia se simplifica  una fracción.
4)       Simplificar es dividir el numerador y el denominador por un mismo número.

RECURSOS REQUERIDOS: Profesores:
Láminas
Pizarra
PC
Data
Alumnos:
Cuadernos
Textos
Regla
Compás




Formativa:
1) Escribe una fracción equivalente a:

=              =

2) Escribe la familia de:

= {


= {

3) Amplifica estas fracciones:

=              =

4) Simplifica:

 =           =
Octubre
Representar situaciones que contienen magnitudes diversas (longitud, capacidad, tiempo) y colecciones, en forma concreta, gráfica y numérica, que impliquen:
-establecer relaciones de orden entre fracciones.



INICIO:
1)       Recuerdan las actividades de la clase anterior.
2)       Conocen el objetivo de la clase de hoy.
3)       Utilizando las huinchas construidas anteriormente resuelven:
“¿Quién pintó más? Entre Camila y Jaime pintaron una hoja de bloc: Camila pintó 5/9 de la hoja y Jaime pintó el resto.
Desarrollo:
1)       Resuelven: ¿Quién comió más pizza. Raúl y Samuel compartieron una pizza. Raúl se comió la mitad y Samuel ¼ de pizza.
a)       ¿Quién va ganando la carrera? A Cristina le faltan 2/6 del recorrido para llegar a la meta y a Soledad le falta 1/3
b)       ¿Quién compró más queso? Camila compró medio kilo, Jaime compró 1 kilo y 1/8; Felipe compró ¾ de kilo.

2)       Copian en una sola huincha todas las fracciones de la actividad anterior y encuentran fracciones que cumplan con las siguientes condiciones:
a)       Tres fracciones entre ½ y 1
b)       Tres fracciones menores que 1
c)       Tres fracciones entre 1 y 2
d)       Tres fracciones entre 1 y 3/2
e)       Tres fracciones entre 1 y 2
CIERRE:
Concluyen que:
1)       En la recta numérica se asocia 1 entero con una unidad, 2 enteros a dos unidades, etc.
2)       El 1 en la recta numérica representa, en cada caso, 1 hoja, 1 pizza, 1 distancia determinada, 1 kilogramo, etc.
3)       Establecen orden entre fracciones con material concreto o gráfico.

RECURSOS REQUERIDOS: Profesores:
Láminas
Pizarra
PC
Data
Alumnos:
Cuadernos
Textos
Regla
Compás




Formativa:
1) Observa las rectas numéricas y anota el signo menor, mayor o igual entre las fracciones:

       │        │        │        │       │
        0                            1

 

        │  │   │   │  │   │  │  │  │
         0                   1

                               


                              


Octubre

Resolver adiciones y sustracciones de fracciones, en situaciones problema, hacer estimaciones y evaluar resultados.


INICIO – MOTIVACIÓN.
1)       Recuerdan las actividades de la clase anterior.
2)       Conocen el objetivo de la clase de hoy.
3)       Observan envases como los del dibujo y las capacidades señaladas en cada uno:
      

DESARROLLO  ACTIVIDADES
1) Utilizando cuantas veces quieran los envases señalados, responden preguntas como las siguientes: ¿De cuántas maneras diferentes pueden reunir 1 kg. de harina? Las escriben.
a) ¿De cuántas maneras diferentes pueden reunir 1 kilo y medio de harina? Las escriben.
b) ¿Cómo pueden juntar 3 kg. de harina utilizando los envase de ½ kg. y de ¼ kg.?

2) Trabajando en grupo o individualmente observan las siguientes tarjetas y responden las preguntas:
a)        ¿En cuáles casos crees que no se derramaría líquido si pasáramos el líquido del primer vaso al segundo vaso?
b)       En los otros casos ¿qué cantidad de líquido habría que dejar en el primer vaso para que no se derramara?
c)        Explican sus respuestas y las escriben.

3) Resuelven situaciones problemas como las siguientes:
    a) Camila ha organizado 3/8 del mural con noticias internacionales, 2/8 con noticias nacionales y el resto lo dejó para chistes. ¿Qué parte del mural corresponde a noticias?
    b) Javier tiene un kilo y medio de harina. Ocupa ¾ de kilo en un queque. ¿Cuánta harina le falta para preparar sopaipillas si necesita 1 kilo de harina?
   c) En la escuela se desarrollan las actividades del día según el siguiente horario: una hora y medida de clases, un cuarto de hora de recreo, una hora y media de clases, un cuarto de hora de recreo, una hora y media de clases. Si la hora de entrada es 8:00 de la mañana. ¿A qué hora salen de la escuela?
 ACTIVIDADES DE CIERRE
concluyen que las fracciones de igual denominador se pueden sumar o restar, en cambio las de distinto denominador hay que expresarlas en igual denominador usando la equivalencia.


RECURSOS REQUERIDOS:
Profesores:
Ficha de actividades
Láminas
PC
Data


Alumnos:
Cuadernos
Textos
Regla
Compás

Formativa:
1) Observan el siguiente dibujo:

¿Cuáles pesas puedes usar para completar las siguientes cantidades?
Puedes utilizar una misma fracción varias veces


2) ¿Cuánto tendrías que quitar para obtener lo que se pide?

No hay comentarios:

Publicar un comentario